Cargando…
Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology
The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685704/ https://www.ncbi.nlm.nih.gov/pubmed/23649713 http://dx.doi.org/10.1007/s00281-013-0380-x |
_version_ | 1782273723387084800 |
---|---|
author | Hahn, Sinuhe Giaglis, Stavros Chowdury, Chanchal Sur Hösli, Irene Hasler, Paul |
author_facet | Hahn, Sinuhe Giaglis, Stavros Chowdury, Chanchal Sur Hösli, Irene Hasler, Paul |
author_sort | Hahn, Sinuhe |
collection | PubMed |
description | The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis. |
format | Online Article Text |
id | pubmed-3685704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-36857042013-06-25 Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology Hahn, Sinuhe Giaglis, Stavros Chowdury, Chanchal Sur Hösli, Irene Hasler, Paul Semin Immunopathol Review The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis. Springer-Verlag 2013-05-07 2013 /pmc/articles/PMC3685704/ /pubmed/23649713 http://dx.doi.org/10.1007/s00281-013-0380-x Text en © The Author(s) 2013 https://creativecommons.org/licenses/by-nc/2.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Review Hahn, Sinuhe Giaglis, Stavros Chowdury, Chanchal Sur Hösli, Irene Hasler, Paul Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title | Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title_full | Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title_fullStr | Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title_full_unstemmed | Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title_short | Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology |
title_sort | modulation of neutrophil netosis: interplay between infectious agents and underlying host physiology |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685704/ https://www.ncbi.nlm.nih.gov/pubmed/23649713 http://dx.doi.org/10.1007/s00281-013-0380-x |
work_keys_str_mv | AT hahnsinuhe modulationofneutrophilnetosisinterplaybetweeninfectiousagentsandunderlyinghostphysiology AT giaglisstavros modulationofneutrophilnetosisinterplaybetweeninfectiousagentsandunderlyinghostphysiology AT chowdurychanchalsur modulationofneutrophilnetosisinterplaybetweeninfectiousagentsandunderlyinghostphysiology AT hosliirene modulationofneutrophilnetosisinterplaybetweeninfectiousagentsandunderlyinghostphysiology AT haslerpaul modulationofneutrophilnetosisinterplaybetweeninfectiousagentsandunderlyinghostphysiology |