Cargando…
Flow parsing and heading perception show similar dependence on quality and quantity of optic flow
Here we examine the relationship between the perception of heading and flow parsing. In a companion study we have investigated the pattern of dependence of human heading estimation on the quantity (amount of dots per frame) and quality (amount of directional noise) of motion information in an optic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685810/ https://www.ncbi.nlm.nih.gov/pubmed/23801945 http://dx.doi.org/10.3389/fnbeh.2013.00049 |
Sumario: | Here we examine the relationship between the perception of heading and flow parsing. In a companion study we have investigated the pattern of dependence of human heading estimation on the quantity (amount of dots per frame) and quality (amount of directional noise) of motion information in an optic flow field. In the present study we investigated whether the flow parsing mechanism, which is thought to aid in the assessment of scene-relative object movement during observer movement, exhibits a similar pattern of dependence on these stimulus manipulations. Finding that the pattern of flow parsing effects was similar to that observed for heading thresholds would provide some evidence that these two complementary roles for optic flow processing are reliant on the same, or similar, neural computation. We found that the pattern of flow parsing effects observed does indeed display a striking similarity to the heading thresholds. As with judgements of heading, there is a critical value of around 25 dots per frame; below this value flow parsing effects rapidly deteriorate and above this value flow parsing effects are stable [see Warren et al. (1988) for similar results for heading]. Also, as with judgements of heading, when there were 50 or more dots there was a systematic effect of noise on the magnitude of the flow parsing effect. These results are discussed in the context of different possible schemes of flow processing to support both heading and flow parsing mechanisms. |
---|