Cargando…
Increased replication of CD4(+) naive T cells and changes in T cell homeostasis in a case of acute exacerbation of juvenile idiopathic arthritis: a case comparison study
INTRODUCTION: Juvenile idiopathic arthritis is a heterogeneous T cell-mediated autoimmune disease with symptoms of premature aging of the immune system (immunosenescence). The present work is an investigation of immunosenescence parameters, such as quantity of naive and CD28(-) T cells, T cell recep...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686624/ https://www.ncbi.nlm.nih.gov/pubmed/23692985 http://dx.doi.org/10.1186/1752-1947-7-135 |
Sumario: | INTRODUCTION: Juvenile idiopathic arthritis is a heterogeneous T cell-mediated autoimmune disease with symptoms of premature aging of the immune system (immunosenescence). The present work is an investigation of immunosenescence parameters, such as quantity of naive and CD28(-) T cells, T cell receptor excision circles, relative telomere length and alterations of peripheral T cell replication, and was performed via comparison of a case of acute exacerbation of juvenile idiopathic arthritis against six patients with juvenile idiopathic arthritis with disease remission and six age-matched healthy donors over a follow-up course of 12 months. CASE PRESENTATION: Phenotypical T cell characterization and intracellular interferon γ, tumor necrosis factor α, and interleukin 2 production were studied in peripheral blood mononuclear cells from seven patients with juvenile idiopathic arthritis and six healthy control donors, with findings determined by flow cytometry. T cell receptor excision circles and relative telomere length quantification were performed on deoxyribonucleic acid isolated from naive (CD4(+)CD28(+)CD45RA(+)) T cells and investigated via reverse transcription polymerase chain reaction. Ki67 expression was studied by immunohistochemistry on naive T cells. The non-parametric Mann-Whitney U test and Wilcoxon test for two independent groups of variables were used to compare healthy donors with patients with juvenile idiopathic arthritis. During follow-up, patients with juvenile idiopathic arthritis showed lower total counts of naive and CD28-expressing T cells compared to healthy donors. Acute exacerbation led to low naive and CD28(+) T cell populations and elevated proportions of Ki67-expressing CD4(+) naive T cells. In conditions of exacerbation, T cell receptor excision circle numbers were in the lower range in patients with juvenile idiopathic arthritis and increased after follow-up. Healthy donors showed significantly higher relative telomere lengths compared to patients with juvenile idiopathic arthritis. CONCLUSIONS: This investigation illustrates that the changes in T cell homeostasis in patients with juvenile idiopathic arthritis may be the result of several mechanisms, such as diminished thymus function and peripheral exertions to maintain the peripheral T cell pool. The results also demonstrate that hallmarks of immunosenescence such as decreased naive T cell levels and lower T cell receptor excision circle numbers can only be interpreted together with replication markers such as relative telomere length or Ki67 expression. |
---|