Cargando…
Effects of Sex on Intra-Individual Variance in Urinary Solutes in Stone-Formers Collected from a Single Clinical Laboratory
BACKGROUND/AIMS: Our work in a rodent model of urinary calcium suggests genetic and gender effects on increased residual variability in urine chemistries. Based on these findings, we hypothesized that sex would similarly be associated with residual variation in human urine solutes. Sex-related effec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686766/ https://www.ncbi.nlm.nih.gov/pubmed/23840293 http://dx.doi.org/10.1371/journal.pone.0053637 |
Sumario: | BACKGROUND/AIMS: Our work in a rodent model of urinary calcium suggests genetic and gender effects on increased residual variability in urine chemistries. Based on these findings, we hypothesized that sex would similarly be associated with residual variation in human urine solutes. Sex-related effects on residuals might affect the establishment of physiological baselines and error in medical assays. METHODS: We tested the effects of sex on residual variation in urine chemistry by estimating coefficients of variation (CV) for urinary solutes in paired sequential 24-h urines (≤72 hour interval) in 6,758 females and 9,024 males aged 16–80 submitted to a clinical laboratory. RESULTS: Females had higher CVs than males for urinary phosphorus overall at the False Discovery Rate (P<0.01). There was no effect of sex on CV for calcium (P>0.3). Males had higher CVs for citrate (P<0.01) from ages 16–45 and females higher CVs for citrate (P<0.01) from ages 56–80, suggesting effects of an extant oestral cycle on residual variance. CONCLUSIONS: Our findings indicate the effects of sex on residual variance of the excretion of urinary solutes including phosphorus and citrate; differences in CV by sex might reflect dietary lability, differences in the fidelity of reporting or genetic differentiation in renal solute consistency. Such an effect could complicate medical analysis by the addition of random error to phenotypic assays. Renal analysis might require explicit incorporation of heterogeneity among factorial effects, and for sex in particular. |
---|