Cargando…
Proton Radiography Peers into Metal Solidification
Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structur...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686777/ https://www.ncbi.nlm.nih.gov/pubmed/23779063 http://dx.doi.org/10.1038/srep02020 |
Sumario: | Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. Here we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm(3)) during melting and solidification. We also show complementary x-ray results from a small volume (<1 mm(3)), bridging four orders of magnitude. Real-time imaging will enable efficient process development and the control of structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models. |
---|