Cargando…
The Role of Uncoupling Proteins in Diabetes Mellitus
Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687498/ https://www.ncbi.nlm.nih.gov/pubmed/23841103 http://dx.doi.org/10.1155/2013/585897 |
_version_ | 1782273941221408768 |
---|---|
author | Liu, Jing Li, Ji Li, Wen-Jian Wang, Chun-Ming |
author_facet | Liu, Jing Li, Ji Li, Wen-Jian Wang, Chun-Ming |
author_sort | Liu, Jing |
collection | PubMed |
description | Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by β-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review. |
format | Online Article Text |
id | pubmed-3687498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-36874982013-07-09 The Role of Uncoupling Proteins in Diabetes Mellitus Liu, Jing Li, Ji Li, Wen-Jian Wang, Chun-Ming J Diabetes Res Review Article Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by β-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review. Hindawi Publishing Corporation 2013 2013-06-05 /pmc/articles/PMC3687498/ /pubmed/23841103 http://dx.doi.org/10.1155/2013/585897 Text en Copyright © 2013 Jing Liu et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Liu, Jing Li, Ji Li, Wen-Jian Wang, Chun-Ming The Role of Uncoupling Proteins in Diabetes Mellitus |
title | The Role of Uncoupling Proteins in Diabetes Mellitus |
title_full | The Role of Uncoupling Proteins in Diabetes Mellitus |
title_fullStr | The Role of Uncoupling Proteins in Diabetes Mellitus |
title_full_unstemmed | The Role of Uncoupling Proteins in Diabetes Mellitus |
title_short | The Role of Uncoupling Proteins in Diabetes Mellitus |
title_sort | role of uncoupling proteins in diabetes mellitus |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687498/ https://www.ncbi.nlm.nih.gov/pubmed/23841103 http://dx.doi.org/10.1155/2013/585897 |
work_keys_str_mv | AT liujing theroleofuncouplingproteinsindiabetesmellitus AT liji theroleofuncouplingproteinsindiabetesmellitus AT liwenjian theroleofuncouplingproteinsindiabetesmellitus AT wangchunming theroleofuncouplingproteinsindiabetesmellitus AT liujing roleofuncouplingproteinsindiabetesmellitus AT liji roleofuncouplingproteinsindiabetesmellitus AT liwenjian roleofuncouplingproteinsindiabetesmellitus AT wangchunming roleofuncouplingproteinsindiabetesmellitus |