Cargando…
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
BACKGROUND: PAM, a nearest shrunken centroid method (NSC), is a popular classification method for high-dimensional data. ALP and AHP are NSC algorithms that were proposed to improve upon PAM. The NSC methods base their classification rules on shrunken centroids; in practice the amount of shrinkage i...
Autores principales: | Blagus, Rok, Lusa, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687811/ https://www.ncbi.nlm.nih.gov/pubmed/23433084 http://dx.doi.org/10.1186/1471-2105-14-64 |
Ejemplares similares
-
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Boosting for high-dimensional two-class prediction
por: Blagus, Rok, et al.
Publicado: (2015) -
Nearest shrunken centroids via alternative genewise shrinkages
por: Choi, Byeong Yeob, et al.
Publicado: (2017) -
Beyond Field Effect: Analysis of Shrunken Centroids in Normal Esophageal Epithelia Detects Concomitant Esophageal Adenocarcinoma
por: Selaru, Florin M., et al.
Publicado: (2009)