Cargando…

Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases

BACKGROUND: The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infect...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Weixu, Pan, Weiqi, Zhang, Anna J. X., Li, Zhengfeng, Wei, Guowei, Feng, Liqiang, Dong, Zhenyuan, Li, Chufang, Hu, Xiangjing, Sun, Caijun, Luo, Qinfang, Yuen, Kwok-Yung, Zhong, Nanshan, Chen, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688872/
https://www.ncbi.nlm.nih.gov/pubmed/23824680
http://dx.doi.org/10.1371/journal.pone.0066276
_version_ 1782274184626307072
author Meng, Weixu
Pan, Weiqi
Zhang, Anna J. X.
Li, Zhengfeng
Wei, Guowei
Feng, Liqiang
Dong, Zhenyuan
Li, Chufang
Hu, Xiangjing
Sun, Caijun
Luo, Qinfang
Yuen, Kwok-Yung
Zhong, Nanshan
Chen, Ling
author_facet Meng, Weixu
Pan, Weiqi
Zhang, Anna J. X.
Li, Zhengfeng
Wei, Guowei
Feng, Liqiang
Dong, Zhenyuan
Li, Chufang
Hu, Xiangjing
Sun, Caijun
Luo, Qinfang
Yuen, Kwok-Yung
Zhong, Nanshan
Chen, Ling
author_sort Meng, Weixu
collection PubMed
description BACKGROUND: The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). METHODOLOGY/PRINCIPAL FINDINGS: The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases.
format Online
Article
Text
id pubmed-3688872
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36888722013-07-02 Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases Meng, Weixu Pan, Weiqi Zhang, Anna J. X. Li, Zhengfeng Wei, Guowei Feng, Liqiang Dong, Zhenyuan Li, Chufang Hu, Xiangjing Sun, Caijun Luo, Qinfang Yuen, Kwok-Yung Zhong, Nanshan Chen, Ling PLoS One Research Article BACKGROUND: The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). METHODOLOGY/PRINCIPAL FINDINGS: The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases. Public Library of Science 2013-06-18 /pmc/articles/PMC3688872/ /pubmed/23824680 http://dx.doi.org/10.1371/journal.pone.0066276 Text en © 2013 Meng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Meng, Weixu
Pan, Weiqi
Zhang, Anna J. X.
Li, Zhengfeng
Wei, Guowei
Feng, Liqiang
Dong, Zhenyuan
Li, Chufang
Hu, Xiangjing
Sun, Caijun
Luo, Qinfang
Yuen, Kwok-Yung
Zhong, Nanshan
Chen, Ling
Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title_full Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title_fullStr Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title_full_unstemmed Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title_short Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases
title_sort rapid generation of human-like neutralizing monoclonal antibodies in urgent preparedness for influenza pandemics and virulent infectious diseases
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688872/
https://www.ncbi.nlm.nih.gov/pubmed/23824680
http://dx.doi.org/10.1371/journal.pone.0066276
work_keys_str_mv AT mengweixu rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT panweiqi rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT zhangannajx rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT lizhengfeng rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT weiguowei rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT fengliqiang rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT dongzhenyuan rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT lichufang rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT huxiangjing rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT suncaijun rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT luoqinfang rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT yuenkwokyung rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT zhongnanshan rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases
AT chenling rapidgenerationofhumanlikeneutralizingmonoclonalantibodiesinurgentpreparednessforinfluenzapandemicsandvirulentinfectiousdiseases