Cargando…

A New Murine Model for Gastrointestinal Anthrax Infection

The scientific community has been restricted by the lack of a practical and informative animal model of gastrointestinal infection with vegetative Bacillus anthracis. We herein report the development of a murine model of gastrointestinal anthrax infection by gavage of vegetative Sterne strain of Bac...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Tao, Sun, Chen, Uslu, Kadriye, Auth, Roger D., Fang, Hui, Ouyang, Weiming, Frucht, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688947/
https://www.ncbi.nlm.nih.gov/pubmed/23825096
http://dx.doi.org/10.1371/journal.pone.0066943
Descripción
Sumario:The scientific community has been restricted by the lack of a practical and informative animal model of gastrointestinal infection with vegetative Bacillus anthracis. We herein report the development of a murine model of gastrointestinal anthrax infection by gavage of vegetative Sterne strain of Bacillus anthracis into the complement-deficient A/J mouse strain. Mice infected in this manner developed lethal infections in a dose-dependent manner and died 30 h-5 d following gavage. Histological findings were consistent with penetration and growth of the bacilli within the intestinal villi, with subsequent dissemination into major organs including the spleen, liver, kidney and lung. Blood cultures confirmed anthrax bacteremia in all moribund animals, with approximately 1/3 showing co-infection with commensal enteric organisms. However, no evidence of immune activation was observed during infection. Time-course experiments revealed early compromise of the intestinal epithelium, characterized by villus blunting and ulceration in the ileum and jejunum. A decrease in body temperature was most predictive of near-term lethality. Antibiotic treatment of infected animals 24 h following high-dose bacterial gavage protected all animals, demonstrating the utility of this animal model in evaluating potential therapeutics.