Cargando…

Spatial vs. Temporal Features in ICA of Resting-State fMRI – A Quantitative and Qualitative Investigation in the Context of Response Inhibition

Independent component analysis (ICA) can identify covarying functional networks in the resting brain. Despite its relatively widespread use, the potential of the temporal information (unlike spatial information) obtained by ICA from resting state fMRI (RS-fMRI) data is not always fully utilized. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Lixia, Kong, Yazhuo, Ren, Juejing, Varoquaux, Gaël, Zang, Yufeng, Smith, Stephen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688987/
https://www.ncbi.nlm.nih.gov/pubmed/23825545
http://dx.doi.org/10.1371/journal.pone.0066572
Descripción
Sumario:Independent component analysis (ICA) can identify covarying functional networks in the resting brain. Despite its relatively widespread use, the potential of the temporal information (unlike spatial information) obtained by ICA from resting state fMRI (RS-fMRI) data is not always fully utilized. In this study, we systematically investigated which features in ICA of resting-state fMRI relate to behaviour, with stop signal reaction time (SSRT) in a stop-signal task taken as a test case. We did this by correlating SSRT with the following three kinds of measure obtained from RS-fMRI data: (1) the amplitude of each resting state network (RSN) (evaluated by the standard deviation of the RSN timeseries), (2) the temporal correlation between every pair of RSN timeseries, and (3) the spatial map of each RSN. For multiple networks, we found significant correlations not only between SSRT and spatial maps, but also between SSRT and network activity amplitude. Most of these correlations are of functional interpretability. The temporal correlations between RSN pairs were of functional significance, but these correlations did not appear to be very sensitive to finding SSRT correlations. In addition, we also investigated the effects of the decomposition dimension, spatial smoothing and Z-transformation of the spatial maps, as well as the techniques for evaluating the temporal correlation between RSN timeseries. Overall, the temporal information acquired by ICA enabled us to investigate brain function from a complementary perspective to the information provided by spatial maps.