Cargando…
Learning and prospective recall of noisy spike pattern episodes
Spike patterns in vivo are often incomplete or corrupted with noise that makes inputs to neuronal networks appear to vary although they may, in fact, be samples of a single underlying pattern or repeated presentation. Here we present a recurrent spiking neural network (SNN) model that learns noisy p...
Autores principales: | Dockendorf, Karl, Srinivasa, Narayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689221/ https://www.ncbi.nlm.nih.gov/pubmed/23801961 http://dx.doi.org/10.3389/fncom.2013.00080 |
Ejemplares similares
-
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2013) -
Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model
por: Panda, Priyadarshini, et al.
Publicado: (2018) -
Mutual information measure of visual perception based on noisy spiking neural networks
por: Xu, Ziheng, et al.
Publicado: (2023) -
Active Experiencing Training Improves Episodic Memory Recall in Older Adults
por: Banducci, Sarah E., et al.
Publicado: (2017)