Cargando…

A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespect...

Descripción completa

Detalles Bibliográficos
Autores principales: Nederlof, Igor, van Genderen, Eric, Li, Yao-Wang, Abrahams, Jan Pieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689525/
https://www.ncbi.nlm.nih.gov/pubmed/23793148
http://dx.doi.org/10.1107/S0907444913009700
Descripción
Sumario:When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e(−) Å(−2)), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.