Cargando…
New Python-based methods for data processing
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h(−1)) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to...
Autores principales: | Sauter, Nicholas K., Hattne, Johan, Grosse-Kunstleve, Ralf W., Echols, Nathaniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689530/ https://www.ncbi.nlm.nih.gov/pubmed/23793153 http://dx.doi.org/10.1107/S0907444913000863 |
Ejemplares similares
-
Robust indexing for automatic data collection
por: Sauter, Nicholas K., et al.
Publicado: (2004) -
Improved crystal orientation and physical properties from single-shot XFEL stills
por: Sauter, Nicholas K., et al.
Publicado: (2014) -
PHENIX: a comprehensive Python-based system for macromolecular structure solution
por: Adams, Paul D., et al.
Publicado: (2010) -
Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns
por: Brewster, Aaron S., et al.
Publicado: (2015) -
Detection and correction of underassigned rotational symmetry prior to structure deposition
por: Poon, Billy K., et al.
Publicado: (2010)