Cargando…
Putting the Rit in cellular resistance: Rit, p38 MAPK and oxidative stress
Cells mobilize diverse signaling pathways to protect against stress-mediated injury. Ras family GTPases play critical roles in this process, controlling the activation and integration of multiple regulatory cascades. p38 mitogen-activated protein kinase (MAPK) signaling serves as a critical fulcrum...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689566/ https://www.ncbi.nlm.nih.gov/pubmed/23802035 http://dx.doi.org/10.4161/cib.22297 |
Sumario: | Cells mobilize diverse signaling pathways to protect against stress-mediated injury. Ras family GTPases play critical roles in this process, controlling the activation and integration of multiple regulatory cascades. p38 mitogen-activated protein kinase (MAPK) signaling serves as a critical fulcrum in this process, regulating networks that stimulate cellular apoptosis but also promote cell survival. However, this functional dichotomy is incompletely understood, particularly regulation of p38-dependent survival. Here, we discuss our recent evidence that the Rit GTPase associates with and is required for stress-mediated activation of a scaffolded p38-MK2-HSP27-Akt pro-survival signaling cascade. Drosophila lacking D-Ric, a Rit homologue, are susceptible to a variety of environmental stresses, while embryonic fibroblasts derived from Rit knockout mice display blunted stress-dependent signaling and decreased viability. Conversely, expression of constitutively active Rit triggers p38-Akt-dependent cell survival. Together, our studies establish Rit as the central regulator of an evolutionarily conserved, p38-dependent signaling cascade that functions as a critical survival mechanism in response to stress. |
---|