Cargando…
An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data
Regulatory networks play a central role in cellular behavior and decision making. Learning these regulatory networks is a major task in biology, and devising computational methods and mathematical models for this task is a major endeavor in bioinformatics. Boolean networks have been used extensively...
Autores principales: | Berestovsky, Natalie, Nakhleh, Luay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689729/ https://www.ncbi.nlm.nih.gov/pubmed/23805196 http://dx.doi.org/10.1371/journal.pone.0066031 |
Ejemplares similares
-
Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks
por: Berestovsky, Natalie, et al.
Publicado: (2013) -
Boolean network inference from time series data incorporating prior biological knowledge
por: Haider, Saad, et al.
Publicado: (2012) -
A novel mutual information-based Boolean network inference method from time-series gene expression data
por: Barman, Shohag, et al.
Publicado: (2017) -
A divide-and-conquer method for scalable phylogenetic network inference from multilocus data
por: Zhu, Jiafan, et al.
Publicado: (2019) -
Learning restricted Boolean network model by time-series data
por: Ouyang, Hongjia, et al.
Publicado: (2014)