Cargando…
Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process
It is known that signal acquisition in Global Navigation Satellite System (GNSS) field provides a rough maximum-likelihood (ML) estimate based on a peak search in a two-dimensional grid. In this paper, the theoretical mathematical expression of the cross-ambiguity function (CAF) is exploited to anal...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690020/ https://www.ncbi.nlm.nih.gov/pubmed/23628761 http://dx.doi.org/10.3390/s130505649 |
_version_ | 1782274333788340224 |
---|---|
author | Tang, Xinhua Falletti, Emanuela Presti, Letizia Lo |
author_facet | Tang, Xinhua Falletti, Emanuela Presti, Letizia Lo |
author_sort | Tang, Xinhua |
collection | PubMed |
description | It is known that signal acquisition in Global Navigation Satellite System (GNSS) field provides a rough maximum-likelihood (ML) estimate based on a peak search in a two-dimensional grid. In this paper, the theoretical mathematical expression of the cross-ambiguity function (CAF) is exploited to analyze the grid and improve the accuracy of the frequency estimate. Based on the simple equation derived from this mathematical expression of the CAF, a family of novel algorithms is proposed to refine the Doppler frequency estimate with respect to that provided by a conventional acquisition method. In an ideal scenario where there is no noise and other nuisances, the frequency estimation error can be theoretically reduced to zero. On the other hand, in the presence of noise, the new algorithm almost reaches the Cramer-Rao Lower Bound (CRLB) which is derived as benchmark. For comparison, a least-square (LS) method is proposed. It is shown that the proposed solution achieves the same performance of LS, but requires a dramatically reduced computational burden. An averaging method is proposed to mitigate the influence of noise, especially when signal-to-noise ratio (SNR) is low. Finally, the influence of the grid resolution in the search space is analyzed in both time and frequency domains. |
format | Online Article Text |
id | pubmed-3690020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-36900202013-07-09 Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process Tang, Xinhua Falletti, Emanuela Presti, Letizia Lo Sensors (Basel) Article It is known that signal acquisition in Global Navigation Satellite System (GNSS) field provides a rough maximum-likelihood (ML) estimate based on a peak search in a two-dimensional grid. In this paper, the theoretical mathematical expression of the cross-ambiguity function (CAF) is exploited to analyze the grid and improve the accuracy of the frequency estimate. Based on the simple equation derived from this mathematical expression of the CAF, a family of novel algorithms is proposed to refine the Doppler frequency estimate with respect to that provided by a conventional acquisition method. In an ideal scenario where there is no noise and other nuisances, the frequency estimation error can be theoretically reduced to zero. On the other hand, in the presence of noise, the new algorithm almost reaches the Cramer-Rao Lower Bound (CRLB) which is derived as benchmark. For comparison, a least-square (LS) method is proposed. It is shown that the proposed solution achieves the same performance of LS, but requires a dramatically reduced computational burden. An averaging method is proposed to mitigate the influence of noise, especially when signal-to-noise ratio (SNR) is low. Finally, the influence of the grid resolution in the search space is analyzed in both time and frequency domains. Molecular Diversity Preservation International (MDPI) 2013-04-29 /pmc/articles/PMC3690020/ /pubmed/23628761 http://dx.doi.org/10.3390/s130505649 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Article Tang, Xinhua Falletti, Emanuela Presti, Letizia Lo Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title | Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title_full | Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title_fullStr | Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title_full_unstemmed | Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title_short | Fast Nearly ML Estimation of Doppler Frequency in GNSS Signal Acquisition Process |
title_sort | fast nearly ml estimation of doppler frequency in gnss signal acquisition process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690020/ https://www.ncbi.nlm.nih.gov/pubmed/23628761 http://dx.doi.org/10.3390/s130505649 |
work_keys_str_mv | AT tangxinhua fastnearlymlestimationofdopplerfrequencyingnsssignalacquisitionprocess AT fallettiemanuela fastnearlymlestimationofdopplerfrequencyingnsssignalacquisitionprocess AT prestiletizialo fastnearlymlestimationofdopplerfrequencyingnsssignalacquisitionprocess |