Cargando…

Selective Detection and Automated Counting of Fluorescently-Labeled Chrysotile Asbestos Using a Dual-Mode High-Throughput Microscopy (DM-HTM) Method

Phase contrast microscopy (PCM) is a widely used analytical method for airborne asbestos, but it is unable to distinguish asbestos from non-asbestos fibers and requires time-consuming and laborious manual counting of fibers. Previously, we developed a high-throughput microscopy (HTM) method that cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Myoung-Ock, Chang, Hyo Mi, Lee, Donghee, Yu, Yeon Gyu, Han, Hwataik, Kim, Jung Kyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690022/
https://www.ncbi.nlm.nih.gov/pubmed/23645106
http://dx.doi.org/10.3390/s130505686
Descripción
Sumario:Phase contrast microscopy (PCM) is a widely used analytical method for airborne asbestos, but it is unable to distinguish asbestos from non-asbestos fibers and requires time-consuming and laborious manual counting of fibers. Previously, we developed a high-throughput microscopy (HTM) method that could greatly reduce human intervention and analysis time through automated image acquisition and counting of fibers. In this study, we designed a dual-mode HTM (DM-HTM) device for the combined reflection and fluorescence imaging of asbestos, and automated a series of built-in image processing commands of ImageJ software to test its capabilities. We used DksA, a chrysotile-adhesive protein, for selective detection of chrysotile fibers in the mixed dust-free suspension of crysotile and amosite prepared in the laboratory. We demonstrate that fluorescently-stained chrysotile and total fibers can be identified and enumerated automatically in a high-throughput manner by the DM-HTM system. Combined with more advanced software that can correctly identify overlapping and branching fibers and distinguish between fibers and elongated dust particles, the DM-HTM method should enable fully automated counting of airborne asbestos.