Cargando…
Boosting Probabilistic Graphical Model Inference by Incorporating Prior Knowledge from Multiple Sources
Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior k...
Autores principales: | Praveen, Paurush, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691143/ https://www.ncbi.nlm.nih.gov/pubmed/23826291 http://dx.doi.org/10.1371/journal.pone.0067410 |
Ejemplares similares
-
Probabilistic graphical models : principles and techniques /
por: Koller, Daphne
Publicado: (2009) -
Advances in probabilistic graphical models
por: Lucas, Peter, et al.
Publicado: (2007) -
Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases
por: Mezlini, Aziz M., et al.
Publicado: (2017) -
Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
por: Pecevski, Dejan, et al.
Publicado: (2011) -
Probabilistic graphical models: principles and techniques
por: Koller, Daphne, et al.
Publicado: (2009)