Cargando…

Assessing Causal Mechanistic Interactions: A Peril Ratio Index of Synergy Based on Multiplicativity

The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction...

Descripción completa

Detalles Bibliográficos
Autor principal: Lee, Wen-Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691192/
https://www.ncbi.nlm.nih.gov/pubmed/23826299
http://dx.doi.org/10.1371/journal.pone.0067424
Descripción
Sumario:The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative metric system for risk, the ‘peril’. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the ‘peril ratio index of synergy based on multiplicativity’ (PRISM). Under the assumption of no redundancy, PRISM can be used to assess synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold to detect a synergy as compared to a previous index of ‘relative excess risk due to interaction’. Using the new PRISM criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact corresponding to bona fide positive or negative synergisms.