Cargando…

Establishment of a Survival and Toxic Cellular Model for Parkinson’s Disease from Chicken Mesencephalon

Cellular models for Parkinson’s disease (PD) represent a fast and efficient tool in the screening for drug candidates and factors involved in the disease pathogenesis. The objective of this study was to establish and characterize a survival and toxic cellular model for PD by culturing dopaminergic n...

Descripción completa

Detalles Bibliográficos
Autores principales: Tolosa, Amparo, Zhou, Xiaolai, Spittau, Björn, Krieglstein, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691473/
https://www.ncbi.nlm.nih.gov/pubmed/23238634
http://dx.doi.org/10.1007/s12640-012-9367-y
Descripción
Sumario:Cellular models for Parkinson’s disease (PD) represent a fast and efficient tool in the screening for drug candidates and factors involved in the disease pathogenesis. The objective of this study was to establish and characterize a survival and toxic cellular model for PD by culturing dopaminergic neurons from embryonic chicken ventral midbrain. We show that as in rodents, the common neurotrophic factors—brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and fibroblast growth factor 2 (FGF2)—are able to support the survival of chicken midbrain dopaminergic neurons. Furthermore, after treatment with MPP(+) or rotenone as in vitro models for PD, the number of tyrosine hydroxylase-positive cells decreased drastically. This effect could be significantly rescued by treatment with BDNF or GDNF. Together, our results indicate that mechanisms of neuroprotection of dopaminergic neurons are conserved between chicken and mammals. This supports the use of primary culture from chicken embryonic midbrain as a suitable tool for the study of neuroprotection in vitro.