Cargando…
Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs
The Laplacian spectra are the eigenvalues of Laplacian matrix L(G) = D(G) − A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G). The spectra of the graph and co...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691549/ https://www.ncbi.nlm.nih.gov/pubmed/23844399 http://dx.doi.org/10.1155/2013/472956 |
_version_ | 1782274483522895872 |
---|---|
author | Wang, Tianfei Jia, Liping Sun, Feng |
author_facet | Wang, Tianfei Jia, Liping Sun, Feng |
author_sort | Wang, Tianfei |
collection | PubMed |
description | The Laplacian spectra are the eigenvalues of Laplacian matrix L(G) = D(G) − A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G). The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable. |
format | Online Article Text |
id | pubmed-3691549 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-36915492013-07-09 Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs Wang, Tianfei Jia, Liping Sun, Feng ScientificWorldJournal Research Article The Laplacian spectra are the eigenvalues of Laplacian matrix L(G) = D(G) − A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G). The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable. Hindawi Publishing Corporation 2013-06-05 /pmc/articles/PMC3691549/ /pubmed/23844399 http://dx.doi.org/10.1155/2013/472956 Text en Copyright © 2013 Tianfei Wang et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Tianfei Jia, Liping Sun, Feng Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title | Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title_full | Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title_fullStr | Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title_full_unstemmed | Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title_short | Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs |
title_sort | bounds of the spectral radius and the nordhaus-gaddum type of the graphs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691549/ https://www.ncbi.nlm.nih.gov/pubmed/23844399 http://dx.doi.org/10.1155/2013/472956 |
work_keys_str_mv | AT wangtianfei boundsofthespectralradiusandthenordhausgaddumtypeofthegraphs AT jialiping boundsofthespectralradiusandthenordhausgaddumtypeofthegraphs AT sunfeng boundsofthespectralradiusandthenordhausgaddumtypeofthegraphs |