Cargando…
Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs
The Laplacian spectra are the eigenvalues of Laplacian matrix L(G) = D(G) − A(G), where D(G) and A(G) are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G). The spectra of the graph and co...
Autores principales: | Wang, Tianfei, Jia, Liping, Sun, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691549/ https://www.ncbi.nlm.nih.gov/pubmed/23844399 http://dx.doi.org/10.1155/2013/472956 |
Ejemplares similares
-
On Nordhaus-Gaddum type relations of δ-complement graphs
por: Vichitkunakorn, Panupong, et al.
Publicado: (2023) -
GADDUM'S PHARMACOLOGY
Publicado: (1972) -
Gaddum's Pharmacology. Ninth Edition
por: Chen, Fabian
Publicado: (1987) -
Spectral radius of graphs
por: Stevanovic, Dragan
Publicado: (2015) -
Bounds for the Z-spectral radius of nonnegative tensors
por: He, Jun, et al.
Publicado: (2016)