Cargando…

Multiple samples aCGH analysis for rare CNVs detection

BACKGROUND: DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH). RESULTS: We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In co...

Descripción completa

Detalles Bibliográficos
Autores principales: Sykulski, Maciej, Gambin, Tomasz, Bartnik, Magdalena, Derwińska, Katarzyna, Wiśniowiecka-Kowalnik, Barbara, Stankiewicz, Paweł, Gambin, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691624/
https://www.ncbi.nlm.nih.gov/pubmed/23758813
http://dx.doi.org/10.1186/2043-9113-3-12
_version_ 1782274500222517248
author Sykulski, Maciej
Gambin, Tomasz
Bartnik, Magdalena
Derwińska, Katarzyna
Wiśniowiecka-Kowalnik, Barbara
Stankiewicz, Paweł
Gambin, Anna
author_facet Sykulski, Maciej
Gambin, Tomasz
Bartnik, Magdalena
Derwińska, Katarzyna
Wiśniowiecka-Kowalnik, Barbara
Stankiewicz, Paweł
Gambin, Anna
author_sort Sykulski, Maciej
collection PubMed
description BACKGROUND: DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH). RESULTS: We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post–processing filtering to any given segmentation method. CONCLUSIONS: Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical framework applied in our method enables to eliminate the influence of widespread technical artifact termed ‘waves’.
format Online
Article
Text
id pubmed-3691624
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36916242013-06-28 Multiple samples aCGH analysis for rare CNVs detection Sykulski, Maciej Gambin, Tomasz Bartnik, Magdalena Derwińska, Katarzyna Wiśniowiecka-Kowalnik, Barbara Stankiewicz, Paweł Gambin, Anna J Clin Bioinforma Research BACKGROUND: DNA copy number variations (CNV) constitute an important source of genetic variability. The standard method used for CNV detection is array comparative genomic hybridization (aCGH). RESULTS: We propose a novel multiple sample aCGH analysis methodology aiming in rare CNVs detection. In contrast to the majority of previous approaches, which deal with cancer datasets, we focus on constitutional genomic abnormalities identified in a diverse spectrum of diseases in human. Our method is tested on exon targeted aCGH array of 366 patients affected with developmental delay/intellectual disability, epilepsy, or autism. The proposed algorithms can be applied as a post–processing filtering to any given segmentation method. CONCLUSIONS: Thanks to the additional information obtained from multiple samples, we could efficiently detect significant segments corresponding to rare CNVs responsible for pathogenic changes. The robust statistical framework applied in our method enables to eliminate the influence of widespread technical artifact termed ‘waves’. BioMed Central 2013-06-11 /pmc/articles/PMC3691624/ /pubmed/23758813 http://dx.doi.org/10.1186/2043-9113-3-12 Text en Copyright © 2013 Sykulski et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Sykulski, Maciej
Gambin, Tomasz
Bartnik, Magdalena
Derwińska, Katarzyna
Wiśniowiecka-Kowalnik, Barbara
Stankiewicz, Paweł
Gambin, Anna
Multiple samples aCGH analysis for rare CNVs detection
title Multiple samples aCGH analysis for rare CNVs detection
title_full Multiple samples aCGH analysis for rare CNVs detection
title_fullStr Multiple samples aCGH analysis for rare CNVs detection
title_full_unstemmed Multiple samples aCGH analysis for rare CNVs detection
title_short Multiple samples aCGH analysis for rare CNVs detection
title_sort multiple samples acgh analysis for rare cnvs detection
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691624/
https://www.ncbi.nlm.nih.gov/pubmed/23758813
http://dx.doi.org/10.1186/2043-9113-3-12
work_keys_str_mv AT sykulskimaciej multiplesamplesacghanalysisforrarecnvsdetection
AT gambintomasz multiplesamplesacghanalysisforrarecnvsdetection
AT bartnikmagdalena multiplesamplesacghanalysisforrarecnvsdetection
AT derwinskakatarzyna multiplesamplesacghanalysisforrarecnvsdetection
AT wisniowieckakowalnikbarbara multiplesamplesacghanalysisforrarecnvsdetection
AT stankiewiczpaweł multiplesamplesacghanalysisforrarecnvsdetection
AT gambinanna multiplesamplesacghanalysisforrarecnvsdetection