Cargando…
The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis
BACKGROUND: The RNA binding protein Hfq of Haemophilus influenzae is highly homologous to Hfq from other bacterial species. In many of these other bacteria, Hfq affects the expression of a broad range of genes and enhances the ability to respond to stressful environments. However, the role of Hfq in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691723/ https://www.ncbi.nlm.nih.gov/pubmed/23767779 http://dx.doi.org/10.1186/1471-2180-13-134 |
_version_ | 1782274516111589376 |
---|---|
author | Hempel, Randy J Morton, Daniel J Seale, Thomas W Whitby, Paul W Stull, Terrence L |
author_facet | Hempel, Randy J Morton, Daniel J Seale, Thomas W Whitby, Paul W Stull, Terrence L |
author_sort | Hempel, Randy J |
collection | PubMed |
description | BACKGROUND: The RNA binding protein Hfq of Haemophilus influenzae is highly homologous to Hfq from other bacterial species. In many of these other bacteria, Hfq affects the expression of a broad range of genes and enhances the ability to respond to stressful environments. However, the role of Hfq in H. influenzae is unknown. RESULTS: Deletion mutants of hfq were generated in the nontypeable H. influenzae strains R2866 and 86-028NP to assess the role of Hfq in these well characterized but genotypically and phenotypically divergent clinical isolates. A deletion mutation of hfq had no effect on growth of H. influenzae in nutrient rich media and had no effect on survival in several stressful conditions in vitro. However, the mutation resulted in a reduced ability to utilize heme from hemoglobin. The mutant and wild type strains were assessed for virulence and competitive fitness in models of invasive disease and otitis media. In the chinchilla model of otitis media, the hfq mutant of 86-028NP exhibited impaired competitive fitness when compared to its wild type progenitor but exhibited no apparent defect in virulence. In the infant rat model, deletion of hfq in R2866 resulted in reduced bacterial titers in blood and a shorter duration of infection when compared to the wild type strain in the competitive fitness study. CONCLUSION: We conclude that Hfq is involved in the utilization of essential nutrients and facilitates infection by H. influenzae. |
format | Online Article Text |
id | pubmed-3691723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36917232013-06-26 The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis Hempel, Randy J Morton, Daniel J Seale, Thomas W Whitby, Paul W Stull, Terrence L BMC Microbiol Research Article BACKGROUND: The RNA binding protein Hfq of Haemophilus influenzae is highly homologous to Hfq from other bacterial species. In many of these other bacteria, Hfq affects the expression of a broad range of genes and enhances the ability to respond to stressful environments. However, the role of Hfq in H. influenzae is unknown. RESULTS: Deletion mutants of hfq were generated in the nontypeable H. influenzae strains R2866 and 86-028NP to assess the role of Hfq in these well characterized but genotypically and phenotypically divergent clinical isolates. A deletion mutation of hfq had no effect on growth of H. influenzae in nutrient rich media and had no effect on survival in several stressful conditions in vitro. However, the mutation resulted in a reduced ability to utilize heme from hemoglobin. The mutant and wild type strains were assessed for virulence and competitive fitness in models of invasive disease and otitis media. In the chinchilla model of otitis media, the hfq mutant of 86-028NP exhibited impaired competitive fitness when compared to its wild type progenitor but exhibited no apparent defect in virulence. In the infant rat model, deletion of hfq in R2866 resulted in reduced bacterial titers in blood and a shorter duration of infection when compared to the wild type strain in the competitive fitness study. CONCLUSION: We conclude that Hfq is involved in the utilization of essential nutrients and facilitates infection by H. influenzae. BioMed Central 2013-06-16 /pmc/articles/PMC3691723/ /pubmed/23767779 http://dx.doi.org/10.1186/1471-2180-13-134 Text en Copyright © 2013 Hempel et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hempel, Randy J Morton, Daniel J Seale, Thomas W Whitby, Paul W Stull, Terrence L The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title | The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title_full | The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title_fullStr | The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title_full_unstemmed | The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title_short | The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis |
title_sort | role of the rna chaperone hfq in haemophilus influenzae pathogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691723/ https://www.ncbi.nlm.nih.gov/pubmed/23767779 http://dx.doi.org/10.1186/1471-2180-13-134 |
work_keys_str_mv | AT hempelrandyj theroleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT mortondanielj theroleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT sealethomasw theroleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT whitbypaulw theroleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT stullterrencel theroleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT hempelrandyj roleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT mortondanielj roleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT sealethomasw roleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT whitbypaulw roleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis AT stullterrencel roleofthernachaperonehfqinhaemophilusinfluenzaepathogenesis |