Cargando…
BiDaS: a web-based Monte Carlo BioData Simulator based on sequence/feature characteristics
BiDaS is a web-application that can generate massive Monte Carlo simulated sequence or numerical feature data sets (e.g. dinucleotide content, composition, transition, distribution properties) based on small user-provided data sets. BiDaS server enables users to analyze their data and generate large...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692108/ https://www.ncbi.nlm.nih.gov/pubmed/23716644 http://dx.doi.org/10.1093/nar/gkt420 |
Sumario: | BiDaS is a web-application that can generate massive Monte Carlo simulated sequence or numerical feature data sets (e.g. dinucleotide content, composition, transition, distribution properties) based on small user-provided data sets. BiDaS server enables users to analyze their data and generate large amounts of: (i) Simulated DNA/RNA and aminoacid (AA) sequences following practically identical sequence and/or extracted feature distributions with the original data. (ii) Simulated numerical features, presenting identical distributions, while preserving the exact 2D or 3D between-feature correlations observed in the original data sets. The server can project the provided sequences to multidimensional feature spaces based on: (i) 38 DNA/RNA features describing conformational and physicochemical nucleotide sequence features from the B-DNA-VIDEO database, (ii) 122 DNA/RNA features based on conformational and thermodynamic dinucleotide properties from the DiProDB database and (iii) Pseudo-aminoacid composition of the initial sequences. To the best of our knowledge, this is the first available web-server that allows users to generate vast numbers of biological data sets with realistic characteristics, while keeping between-feature associations. These data sets can be used for a wide variety of current biological problems, such as the in-depth study of gene, transcript, peptide and protein groups/families; the creation of large data sets from just a few available members and the strengthening of machine learning classifiers. All simulations use advanced Monte Carlo sampling techniques. The BiDaS web-application is available at http://bioserver-3.bioacademy.gr/Bioserver/BiDaS/. |
---|