Cargando…

High Cholesterol Diet Induces IL-1β Expression in Adult but Not Larval Zebrafish

Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regar...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoon, Yina, Yoon, Jihye, Jang, Man-Young, Na, Yirang, Ko, Youngho, Choi, Jae-Hoon, Seok, Seung Hyeok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692503/
https://www.ncbi.nlm.nih.gov/pubmed/23825600
http://dx.doi.org/10.1371/journal.pone.0066970
Descripción
Sumario:Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1β and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1β expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis.