Cargando…
Detection of Patients with Influenza Syndrome Using Machine-Learning Models Learned from Emergency Department Reports
OBJECTIVE: Compare 7 machine learning algorithms with an expert constructed Bayesian network on detection of patients with influenza syndrome. INTRODUCTION: Early detection of influenza outbreaks is critical to public health officials. Case detection is the foundation for outbreak detection. Previou...
Autores principales: | Pineda, Arturo López, Tsui, Fu-Chiang, Visweswaran, Shyam, Cooper, Gregory F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Illinois at Chicago Library
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692886/ |
Ejemplares similares
-
Modeling Baseline Shifts in Multivariate Disease Outbreak Detection
por: Que, Jialan, et al.
Publicado: (2013) -
Novel Emergency Department High Utilizer Surveillance In New Hampshire
por: Swenson, David J., et al.
Publicado: (2013) -
Use of a Real-Time Syndromic Surveillance System to Improve Influenza Like Illness Screening and Documentation in Emergency Departments during the H1N1 Pandemic
por: Meurer, David, et al.
Publicado: (2013) -
Using Syndromic Emergency Department Data to Augment Oral Health Surveillance
por: Jasek, John P., et al.
Publicado: (2013) -
Analysis of Heat Illness using Michigan Emergency Department Syndromic Surveillance
por: Mamou, Fatema*, et al.
Publicado: (2013)