Cargando…
Modeling Baseline Shifts in Multivariate Disease Outbreak Detection
OBJECTIVE: Outbreak detection algorithms monitoring only disease-relevant data streams may be prone to false alarms due to baseline shifts. In this paper, we propose a Multinomial-Generalized-Dirichlet (MGD) model to adjust for baseline shifts. INTRODUCTION: Population surges or large events may cau...
Autores principales: | Que, Jialan, Tsui, Fu-Chiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Illinois at Chicago Library
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692939/ |
Ejemplares similares
-
Detection of Patients with Influenza Syndrome Using Machine-Learning Models Learned from Emergency Department Reports
por: Pineda, Arturo López, et al.
Publicado: (2013) -
A Framework for Detecting and Classifying Outbreaks of Gastrointestinal Disease
por: Morrison, Kathryn, et al.
Publicado: (2013) -
Determinants of Outbreak Detection Performance
por: Jafarpour, Nastaran, et al.
Publicado: (2013) -
Syndromic Surveillance for Outbreak Detection and Investigation
por: Andersson, Tom, et al.
Publicado: (2013) -
Utility of System Generated Syndromic Surveillance Alerts to Detect Reportable Disease Outbreaks
por: Eggers, Carrie, et al.
Publicado: (2013)