Cargando…
Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats
Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for gen...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693071/ https://www.ncbi.nlm.nih.gov/pubmed/23805075 http://dx.doi.org/10.3389/fncel.2013.00099 |
_version_ | 1782274700161843200 |
---|---|
author | Boudewijns, Zimbo S. R. M. Groen, Martine R. Lodder, Brendan McMaster, Minni T. B. Kalogreades, Lawrence de Haan, Roel Narayanan, Rajeevan T. Meredith, Rhiannon M. Mansvelder, Huibert D. de Kock, Christiaan P. J. |
author_facet | Boudewijns, Zimbo S. R. M. Groen, Martine R. Lodder, Brendan McMaster, Minni T. B. Kalogreades, Lawrence de Haan, Roel Narayanan, Rajeevan T. Meredith, Rhiannon M. Mansvelder, Huibert D. de Kock, Christiaan P. J. |
author_sort | Boudewijns, Zimbo S. R. M. |
collection | PubMed |
description | Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for generation of such dendritic calcium spikes can be very different depending on cell type or brain area involved. Previously, it was shown in vitro that calcium electrogenesis can be induced in L(ayer) 5 pyramidal neurons of prefrontal cortex (PFC). It remains an open question whether somatic burst spiking and the resulting dendritic calcium electrogenesis also occur in morphologically more compact L2/3 pyramidal neurons. Furthermore, it is not known whether critical frequencies that trigger dendritic calcium electrogenesis occur in PFC under awake conditions in vivo. Here, we addressed these issues and found that pyramidal neurons in both PFC L2/3 and L5 in awake rats spike APs in short bursts but with different probabilities. The critical frequency (CF) for calcium electrogenesis in vitro was layer-specific and lower in L5 neurons compared to L2/3. Taking the in vitro CF as a predictive measure for dendritic electrogenesis during in vivo spontaneous activity, supracritical bursts in vivo were observed in a larger fraction of L5 neurons compared to L2/3 neurons but with similar incidence within these subpopulations. Together, these results show that in PFC of awake rats, AP spiking occurs at frequencies that are relevant for dendritic calcium electrogenesis and suggest that in awake rat PFC, dendritic calcium electrogenesis may be involved in neuronal computation. |
format | Online Article Text |
id | pubmed-3693071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-36930712013-06-26 Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats Boudewijns, Zimbo S. R. M. Groen, Martine R. Lodder, Brendan McMaster, Minni T. B. Kalogreades, Lawrence de Haan, Roel Narayanan, Rajeevan T. Meredith, Rhiannon M. Mansvelder, Huibert D. de Kock, Christiaan P. J. Front Cell Neurosci Neuroscience Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for generation of such dendritic calcium spikes can be very different depending on cell type or brain area involved. Previously, it was shown in vitro that calcium electrogenesis can be induced in L(ayer) 5 pyramidal neurons of prefrontal cortex (PFC). It remains an open question whether somatic burst spiking and the resulting dendritic calcium electrogenesis also occur in morphologically more compact L2/3 pyramidal neurons. Furthermore, it is not known whether critical frequencies that trigger dendritic calcium electrogenesis occur in PFC under awake conditions in vivo. Here, we addressed these issues and found that pyramidal neurons in both PFC L2/3 and L5 in awake rats spike APs in short bursts but with different probabilities. The critical frequency (CF) for calcium electrogenesis in vitro was layer-specific and lower in L5 neurons compared to L2/3. Taking the in vitro CF as a predictive measure for dendritic electrogenesis during in vivo spontaneous activity, supracritical bursts in vivo were observed in a larger fraction of L5 neurons compared to L2/3 neurons but with similar incidence within these subpopulations. Together, these results show that in PFC of awake rats, AP spiking occurs at frequencies that are relevant for dendritic calcium electrogenesis and suggest that in awake rat PFC, dendritic calcium electrogenesis may be involved in neuronal computation. Frontiers Media S.A. 2013-06-26 /pmc/articles/PMC3693071/ /pubmed/23805075 http://dx.doi.org/10.3389/fncel.2013.00099 Text en Copyright © 2013 Boudewijns, Groen, Lodder, McMaster, Kalogreades, de Haan, Narayanan, Meredith, Mansvelder and de Kock. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Boudewijns, Zimbo S. R. M. Groen, Martine R. Lodder, Brendan McMaster, Minni T. B. Kalogreades, Lawrence de Haan, Roel Narayanan, Rajeevan T. Meredith, Rhiannon M. Mansvelder, Huibert D. de Kock, Christiaan P. J. Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title | Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title_full | Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title_fullStr | Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title_full_unstemmed | Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title_short | Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
title_sort | layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693071/ https://www.ncbi.nlm.nih.gov/pubmed/23805075 http://dx.doi.org/10.3389/fncel.2013.00099 |
work_keys_str_mv | AT boudewijnszimbosrm layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT groenmartiner layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT lodderbrendan layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT mcmasterminnitb layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT kalogreadeslawrence layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT dehaanroel layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT narayananrajeevant layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT meredithrhiannonm layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT mansvelderhuibertd layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats AT dekockchristiaanpj layerspecifichighfrequencyactionpotentialspikingintheprefrontalcortexofawakerats |