Cargando…

Biomarkers of Cognitive Training Effects in Aging

An increasing number of studies have relied on brain imaging to assess the effects of cognitive training in healthy aging populations and in persons with early Alzheimer’s disease or mild cognitive impairment (MCI). At the structural level, cognitive training in healthy aging individuals has been as...

Descripción completa

Detalles Bibliográficos
Autores principales: Belleville, Sylvie, Bherer, Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693427/
https://www.ncbi.nlm.nih.gov/pubmed/23864998
http://dx.doi.org/10.1007/s13670-012-0014-5
Descripción
Sumario:An increasing number of studies have relied on brain imaging to assess the effects of cognitive training in healthy aging populations and in persons with early Alzheimer’s disease or mild cognitive impairment (MCI). At the structural level, cognitive training in healthy aging individuals has been associated with increased brain volume, cortical thickness, and density and coherence of white matter tracts. At the functional level, task-related brain activation (using fMRI and PET) and fluorodeoxyglucose positron emission tomography (FDG-PET) were found to be sensitive to the effects of training. In persons with MCI, cognitive training increased brain metabolism and task-related brain activation, whereas healthy older adults showed patterns of increased and decreased activation. Further studies are required to generalize these findings to larger groups and to investigate more diverse training protocols. Research will also need to address important methodological issues regarding the use of biomarkers in cognitive aging, including reliability, clinical validity, and relevance to the pathophysiological process.