Cargando…
Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast
The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enz...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693829/ https://www.ncbi.nlm.nih.gov/pubmed/23549479 http://dx.doi.org/10.1038/msb.2013.11 |
_version_ | 1782274756377051136 |
---|---|
author | Zampar, Guillermo G Kümmel, Anne Ewald, Jennifer Jol, Stefan Niebel, Bastian Picotti, Paola Aebersold, Ruedi Sauer, Uwe Zamboni, Nicola Heinemann, Matthias |
author_facet | Zampar, Guillermo G Kümmel, Anne Ewald, Jennifer Jol, Stefan Niebel, Bastian Picotti, Paola Aebersold, Ruedi Sauer, Uwe Zamboni, Nicola Heinemann, Matthias |
author_sort | Zampar, Guillermo G |
collection | PubMed |
description | The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enzymes) profiles. We found that the diauxic shift is accomplished by three key events that are temporally organized: (i) a reduction in the glycolytic flux and the production of storage compounds before glucose depletion, mediated by downregulation of phosphofructokinase and pyruvate kinase reactions; (ii) upon glucose exhaustion, the reversion of carbon flow through glycolysis and onset of the glyoxylate cycle operation triggered by an increased expression of the enzymes that catalyze the malate synthase and cytosolic citrate synthase reactions; and (iii) in the later stages of the adaptation, the shutting down of the pentose phosphate pathway with a change in NADPH regeneration. Moreover, we identified the transcription factors associated with the observed changes in protein abundances. Taken together, our results represent an important contribution toward a systems-level understanding of how this adaptation is realized. |
format | Online Article Text |
id | pubmed-3693829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | European Molecular Biology Organization |
record_format | MEDLINE/PubMed |
spelling | pubmed-36938292013-06-27 Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast Zampar, Guillermo G Kümmel, Anne Ewald, Jennifer Jol, Stefan Niebel, Bastian Picotti, Paola Aebersold, Ruedi Sauer, Uwe Zamboni, Nicola Heinemann, Matthias Mol Syst Biol Article The diauxic shift in Saccharomyces cerevisiae is an ideal model to study how eukaryotic cells readjust their metabolism from glycolytic to gluconeogenic operation. In this work, we generated time-resolved physiological data, quantitative metabolome (69 intracellular metabolites) and proteome (72 enzymes) profiles. We found that the diauxic shift is accomplished by three key events that are temporally organized: (i) a reduction in the glycolytic flux and the production of storage compounds before glucose depletion, mediated by downregulation of phosphofructokinase and pyruvate kinase reactions; (ii) upon glucose exhaustion, the reversion of carbon flow through glycolysis and onset of the glyoxylate cycle operation triggered by an increased expression of the enzymes that catalyze the malate synthase and cytosolic citrate synthase reactions; and (iii) in the later stages of the adaptation, the shutting down of the pentose phosphate pathway with a change in NADPH regeneration. Moreover, we identified the transcription factors associated with the observed changes in protein abundances. Taken together, our results represent an important contribution toward a systems-level understanding of how this adaptation is realized. European Molecular Biology Organization 2013-04-02 /pmc/articles/PMC3693829/ /pubmed/23549479 http://dx.doi.org/10.1038/msb.2013.11 Text en Copyright © 2013, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by/3.0/This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) . |
spellingShingle | Article Zampar, Guillermo G Kümmel, Anne Ewald, Jennifer Jol, Stefan Niebel, Bastian Picotti, Paola Aebersold, Ruedi Sauer, Uwe Zamboni, Nicola Heinemann, Matthias Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title | Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title_full | Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title_fullStr | Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title_full_unstemmed | Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title_short | Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
title_sort | temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693829/ https://www.ncbi.nlm.nih.gov/pubmed/23549479 http://dx.doi.org/10.1038/msb.2013.11 |
work_keys_str_mv | AT zamparguillermog temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT kummelanne temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT ewaldjennifer temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT jolstefan temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT niebelbastian temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT picottipaola temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT aebersoldruedi temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT saueruwe temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT zamboninicola temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast AT heinemannmatthias temporalsystemlevelorganizationoftheswitchfromglycolytictogluconeogenicoperationinyeast |