Cargando…

6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells

BACKGROUND: The aryl hydrocarbon receptor (AhR) ligand 6-Formylindolo(3,2-b)carbazole (FICZ) has received increasing attention since its identification as an endogenous AhR ligand and a photoproduct of tryptophan. FICZ and its metabolites have been detected in human fluids. We recently reported that...

Descripción completa

Detalles Bibliográficos
Autores principales: Bunaciu, Rodica P, Yen, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693992/
https://www.ncbi.nlm.nih.gov/pubmed/23656719
http://dx.doi.org/10.1186/1476-4598-12-39
_version_ 1782274786350596096
author Bunaciu, Rodica P
Yen, Andrew
author_facet Bunaciu, Rodica P
Yen, Andrew
author_sort Bunaciu, Rodica P
collection PubMed
description BACKGROUND: The aryl hydrocarbon receptor (AhR) ligand 6-Formylindolo(3,2-b)carbazole (FICZ) has received increasing attention since its identification as an endogenous AhR ligand and a photoproduct of tryptophan. FICZ and its metabolites have been detected in human fluids. We recently reported that AhR promotes retinoic acid (RA)-induced granulocytic differentiation of HL-60 myeloblastic leukemia cells by restricting the nuclear abundance of the stem cell associated transcription factor Oct4. The standard clinical management of acute promyelocytic leukemia (APL) is differentiation induction therapy using RA. But RA is not effective for other myeloid leukemias, making the mechanism of RA-induced differentiation observed in a non-APL myeloid leukemia of interest. To our knowledge, this is the first study regarding the influence of FICZ on RA-induced differentiation in any type of leukemic blasts. METHODS: Using flow cytometry and Western blotting assays, we determined the effects of FICZ on RA-induced differentiation of HL-60 human leukemia cells. All experiments were performed in triplicate. The groups RA and FICZ + RA were compared using the Paired-Samples T-Test. Western blot figures present the typical blots. RESULTS: We demonstrate that FICZ enhances RA-induced differentiation, assessed by the expression of the membrane differentiation marker CD11b; cell cycle arrest; and the functional differentiation marker, inducible-oxidative metabolism. FICZ causes changes in signaling events that are known to drive differentiation, and notably augments the RA-induced sustained activation of the RAF/MEK/ERK axis of the mitogen-activated protein kinase (MAPK) cascade. FICZ also augments expression of the known MAPK signaling regulatory molecules c-Cbl, VAV1, pY458 p85 PI3K, Src-family kinases (SFKs), and IRF-1, a transcription factor associated with this putative signalsome that promotes RA-induced differentiation. Moreover, FICZ in combination with RA also increases expression of AhR and even more so of both Cyp1A2 and p47phox, which are known to be transcriptionally regulated by AhR. pY1021 PDGFRβ, a marker associated with retinoic acid syndrome was also increased. CONCLUSIONS: Our data suggest that FICZ modulates intracellular signaling pathways and enhances RA-induced differentiation.
format Online
Article
Text
id pubmed-3693992
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36939922013-06-27 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells Bunaciu, Rodica P Yen, Andrew Mol Cancer Research BACKGROUND: The aryl hydrocarbon receptor (AhR) ligand 6-Formylindolo(3,2-b)carbazole (FICZ) has received increasing attention since its identification as an endogenous AhR ligand and a photoproduct of tryptophan. FICZ and its metabolites have been detected in human fluids. We recently reported that AhR promotes retinoic acid (RA)-induced granulocytic differentiation of HL-60 myeloblastic leukemia cells by restricting the nuclear abundance of the stem cell associated transcription factor Oct4. The standard clinical management of acute promyelocytic leukemia (APL) is differentiation induction therapy using RA. But RA is not effective for other myeloid leukemias, making the mechanism of RA-induced differentiation observed in a non-APL myeloid leukemia of interest. To our knowledge, this is the first study regarding the influence of FICZ on RA-induced differentiation in any type of leukemic blasts. METHODS: Using flow cytometry and Western blotting assays, we determined the effects of FICZ on RA-induced differentiation of HL-60 human leukemia cells. All experiments were performed in triplicate. The groups RA and FICZ + RA were compared using the Paired-Samples T-Test. Western blot figures present the typical blots. RESULTS: We demonstrate that FICZ enhances RA-induced differentiation, assessed by the expression of the membrane differentiation marker CD11b; cell cycle arrest; and the functional differentiation marker, inducible-oxidative metabolism. FICZ causes changes in signaling events that are known to drive differentiation, and notably augments the RA-induced sustained activation of the RAF/MEK/ERK axis of the mitogen-activated protein kinase (MAPK) cascade. FICZ also augments expression of the known MAPK signaling regulatory molecules c-Cbl, VAV1, pY458 p85 PI3K, Src-family kinases (SFKs), and IRF-1, a transcription factor associated with this putative signalsome that promotes RA-induced differentiation. Moreover, FICZ in combination with RA also increases expression of AhR and even more so of both Cyp1A2 and p47phox, which are known to be transcriptionally regulated by AhR. pY1021 PDGFRβ, a marker associated with retinoic acid syndrome was also increased. CONCLUSIONS: Our data suggest that FICZ modulates intracellular signaling pathways and enhances RA-induced differentiation. BioMed Central 2013-05-09 /pmc/articles/PMC3693992/ /pubmed/23656719 http://dx.doi.org/10.1186/1476-4598-12-39 Text en Copyright © 2013 Bunaciu and Yen; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Bunaciu, Rodica P
Yen, Andrew
6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title_full 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title_fullStr 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title_full_unstemmed 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title_short 6-Formylindolo (3,2-b)carbazole (FICZ) enhances retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells
title_sort 6-formylindolo (3,2-b)carbazole (ficz) enhances retinoic acid (ra)-induced differentiation of hl-60 myeloblastic leukemia cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693992/
https://www.ncbi.nlm.nih.gov/pubmed/23656719
http://dx.doi.org/10.1186/1476-4598-12-39
work_keys_str_mv AT bunaciurodicap 6formylindolo32bcarbazoleficzenhancesretinoicacidrainduceddifferentiationofhl60myeloblasticleukemiacells
AT yenandrew 6formylindolo32bcarbazoleficzenhancesretinoicacidrainduceddifferentiationofhl60myeloblasticleukemiacells