Cargando…
Mining Proteins with Non-Experimental Annotations Based on an Active Sample Selection Strategy for Predicting Protein Subcellular Localization
Subcellular localization of a protein is important to understand proteins’ functions and interactions. There are many techniques based on computational methods to predict protein subcellular locations, but it has been shown that many prediction tasks have a training data shortage problem. This paper...
Autores principales: | Cao, Junzhe, Liu, Wenqi, He, Jianjun, Gu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694045/ https://www.ncbi.nlm.nih.gov/pubmed/23840667 http://dx.doi.org/10.1371/journal.pone.0067343 |
Ejemplares similares
-
Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites
por: He, Jianjun, et al.
Publicado: (2012) -
Experimental validation of predicted subcellular localizations of human proteins
por: Chaturvedi, Nagendra K, et al.
Publicado: (2014) -
Semi-supervised protein subcellular localization
por: Xu, Qian, et al.
Publicado: (2009) -
Refining Protein Subcellular Localization
por: Scott, Michelle S, et al.
Publicado: (2005) -
Subcellular Localization Prediction of Human Proteins Using Multifeature Selection Methods
por: Zhang, Yu-Hang, et al.
Publicado: (2022)