Cargando…

Augmenting Weak Semantic Cognitive Maps with an “Abstractness” Dimension

The emergent consensus on dimensional models of sentiment, appraisal, emotions, and values is on the semantics of the principal dimensions, typically interpreted as valence, arousal, and dominance. The notion of weak semantic maps was introduced recently as distribution of representations in abstrac...

Descripción completa

Detalles Bibliográficos
Autores principales: Samsonovich, Alexei V., Ascoli, Giorgio A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694378/
https://www.ncbi.nlm.nih.gov/pubmed/23840200
http://dx.doi.org/10.1155/2013/308176
Descripción
Sumario:The emergent consensus on dimensional models of sentiment, appraisal, emotions, and values is on the semantics of the principal dimensions, typically interpreted as valence, arousal, and dominance. The notion of weak semantic maps was introduced recently as distribution of representations in abstract spaces that are not derived from human judgments, psychometrics, or any other a priori information about their semantics. Instead, they are defined entirely by binary semantic relations among representations, such as synonymy and antonymy. An interesting question concerns the ability of the antonymy-based semantic maps to capture all “universal” semantic dimensions. The present work shows that those narrow weak semantic maps are not complete in this sense and can be augmented with other semantic relations. Specifically, including hyponym-hypernym relations yields a new semantic dimension of the map labeled here “abstractness” (or ontological generality) that is not reducible to any dimensions represented by antonym pairs or to traditional affective space dimensions. It is expected that including other semantic relations (e.g., meronymy/holonymy) will also result in the addition of new semantic dimensions to the map. These findings have broad implications for automated quantitative evaluation of the meaning of text and may shed light on the nature of human subjective experience.