Cargando…

pyGenClean: efficient tool for genetic data clean up before association testing

Summary: Genetic association studies making use of high-throughput genotyping arrays need to process large amounts of data in the order of millions of markers per experiment. The first step of any analysis with genotyping arrays is typically the conduct of a thorough data clean up and quality contro...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemieux Perreault, Louis-Philippe, Provost, Sylvie, Legault, Marc-André, Barhdadi, Amina, Dubé, Marie-Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694635/
https://www.ncbi.nlm.nih.gov/pubmed/23652425
http://dx.doi.org/10.1093/bioinformatics/btt261
Descripción
Sumario:Summary: Genetic association studies making use of high-throughput genotyping arrays need to process large amounts of data in the order of millions of markers per experiment. The first step of any analysis with genotyping arrays is typically the conduct of a thorough data clean up and quality control to remove poor quality genotypes and generate metrics to inform and select individuals for downstream statistical analysis. We have developed pyGenClean, a bioinformatics tool to facilitate and standardize the genetic data clean up pipeline with genotyping array data. In conjunction with a source batch-queuing system, the tool minimizes data manipulation errors, accelerates the completion of the data clean up process and provides informative plots and metrics to guide decision making for statistical analysis. Availability and implementation: pyGenClean is an open source Python 2.7 software and is freely available, along with documentation and examples, from http://www.statgen.org. Contact: louis-philippe.lemieux.perreault@umontreal.ca or marie-pierre.dube@statgen.org