Cargando…
Predicting drug-target interactions using restricted Boltzmann machines
Motivation: In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of the...
Autores principales: | Wang, Yuhao, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694663/ https://www.ncbi.nlm.nih.gov/pubmed/23812976 http://dx.doi.org/10.1093/bioinformatics/btt234 |
Ejemplares similares
-
Using state machines to model the Ion Torrent sequencing process and to improve read error rates
por: Golan, David, et al.
Publicado: (2013) -
Multitask learning for host–pathogen protein interactions
por: Kshirsagar, Meghana, et al.
Publicado: (2013) -
Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM
por: Sedgewick, Andrew J., et al.
Publicado: (2013) -
Predicting protein interactions via parsimonious network history inference
por: Patro, Rob, et al.
Publicado: (2013) -
Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding
por: Cannistraci, Carlo Vittorio, et al.
Publicado: (2013)