Cargando…
Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding
Motivation: Most functions within the cell emerge thanks to protein–protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (...
Autores principales: | Cannistraci, Carlo Vittorio, Alanis-Lobato, Gregorio, Ravasi, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694668/ https://www.ncbi.nlm.nih.gov/pubmed/23812985 http://dx.doi.org/10.1093/bioinformatics/btt208 |
Ejemplares similares
-
Simple topological properties predict functional misannotations in a metabolic network
por: Liberal, Rodrigo, et al.
Publicado: (2013) -
Compressive genomics for protein databases
por: Daniels, Noah M., et al.
Publicado: (2013) -
Learning subgroup-specific regulatory interactions and regulator independence with PARADIGM
por: Sedgewick, Andrew J., et al.
Publicado: (2013) -
Author Index
Publicado: (2013) -
Haplotype assembly in polyploid genomes and identical by descent shared tracts
por: Aguiar, Derek, et al.
Publicado: (2013)