Cargando…

A framework for scalable parameter estimation of gene circuit models using structural information

Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel fram...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuwahara, Hiroyuki, Fan, Ming, Wang, Suojin, Gao, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694671/
https://www.ncbi.nlm.nih.gov/pubmed/23813015
http://dx.doi.org/10.1093/bioinformatics/btt232
_version_ 1782274885877235712
author Kuwahara, Hiroyuki
Fan, Ming
Wang, Suojin
Gao, Xin
author_facet Kuwahara, Hiroyuki
Fan, Ming
Wang, Suojin
Gao, Xin
author_sort Kuwahara, Hiroyuki
collection PubMed
description Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. Availability: http://sfb.kaust.edu.sa/Pages/Software.aspx Contact: xin.gao@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-3694671
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-36946712013-06-27 A framework for scalable parameter estimation of gene circuit models using structural information Kuwahara, Hiroyuki Fan, Ming Wang, Suojin Gao, Xin Bioinformatics Ismb/Eccb 2013 Proceedings Papers Committee July 21 to July 23, 2013, Berlin, Germany Motivation: Systematic and scalable parameter estimation is a key to construct complex gene regulatory models and to ultimately facilitate an integrative systems biology approach to quantitatively understand the molecular mechanisms underpinning gene regulation. Results: Here, we report a novel framework for efficient and scalable parameter estimation that focuses specifically on modeling of gene circuits. Exploiting the structure commonly found in gene circuit models, this framework decomposes a system of coupled rate equations into individual ones and efficiently integrates them separately to reconstruct the mean time evolution of the gene products. The accuracy of the parameter estimates is refined by iteratively increasing the accuracy of numerical integration using the model structure. As a case study, we applied our framework to four gene circuit models with complex dynamics based on three synthetic datasets and one time series microarray data set. We compared our framework to three state-of-the-art parameter estimation methods and found that our approach consistently generated higher quality parameter solutions efficiently. Although many general-purpose parameter estimation methods have been applied for modeling of gene circuits, our results suggest that the use of more tailored approaches to use domain-specific information may be a key to reverse engineering of complex biological systems. Availability: http://sfb.kaust.edu.sa/Pages/Software.aspx Contact: xin.gao@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2013-07-01 2013-06-19 /pmc/articles/PMC3694671/ /pubmed/23813015 http://dx.doi.org/10.1093/bioinformatics/btt232 Text en © The Author 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Ismb/Eccb 2013 Proceedings Papers Committee July 21 to July 23, 2013, Berlin, Germany
Kuwahara, Hiroyuki
Fan, Ming
Wang, Suojin
Gao, Xin
A framework for scalable parameter estimation of gene circuit models using structural information
title A framework for scalable parameter estimation of gene circuit models using structural information
title_full A framework for scalable parameter estimation of gene circuit models using structural information
title_fullStr A framework for scalable parameter estimation of gene circuit models using structural information
title_full_unstemmed A framework for scalable parameter estimation of gene circuit models using structural information
title_short A framework for scalable parameter estimation of gene circuit models using structural information
title_sort framework for scalable parameter estimation of gene circuit models using structural information
topic Ismb/Eccb 2013 Proceedings Papers Committee July 21 to July 23, 2013, Berlin, Germany
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694671/
https://www.ncbi.nlm.nih.gov/pubmed/23813015
http://dx.doi.org/10.1093/bioinformatics/btt232
work_keys_str_mv AT kuwaharahiroyuki aframeworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT fanming aframeworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT wangsuojin aframeworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT gaoxin aframeworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT kuwaharahiroyuki frameworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT fanming frameworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT wangsuojin frameworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation
AT gaoxin frameworkforscalableparameterestimationofgenecircuitmodelsusingstructuralinformation