Cargando…
Automated annotation of gene expression image sequences via non-parametric factor analysis and conditional random fields
Motivation: Computational approaches for the annotation of phenotypes from image data have shown promising results across many applications, and provide rich and valuable information for studying gene function and interactions. While data are often available both at high spatial resolution and acros...
Autores principales: | Pruteanu-Malinici, Iulian, Majoros, William H., Ohler, Uwe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694682/ https://www.ncbi.nlm.nih.gov/pubmed/23812993 http://dx.doi.org/10.1093/bioinformatics/btt206 |
Ejemplares similares
-
Automated cellular annotation for high-resolution images of adult Caenorhabditis elegans
por: Aerni, Sarah J., et al.
Publicado: (2013) -
Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation
por: Hafez, Dina, et al.
Publicado: (2013) -
Information-theoretic evaluation of predicted ontological annotations
por: Clark, Wyatt T., et al.
Publicado: (2013) -
Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms
por: Xu, Min, et al.
Publicado: (2013) -
Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation
por: Le, Hai-Son, et al.
Publicado: (2013)