Cargando…
Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes
Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694795/ https://www.ncbi.nlm.nih.gov/pubmed/23637461 http://dx.doi.org/10.1091/mbc.E12-12-0856 |
_version_ | 1782274890214146048 |
---|---|
author | van den Dries, K. Schwartz, S. L. Byars, J. Meddens, M.B.M. Bolomini-Vittori, M. Lidke, D. S. Figdor, C. G. Lidke, K. A. Cambi, A. |
author_facet | van den Dries, K. Schwartz, S. L. Byars, J. Meddens, M.B.M. Bolomini-Vittori, M. Lidke, D. S. Figdor, C. G. Lidke, K. A. Cambi, A. |
author_sort | van den Dries, K. |
collection | PubMed |
description | Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations correlate with intensity fluctuations of vinculin but not talin, suggesting different molecular rearrangements for these components. Detailed information on the mutual localization of core and ring components at the nanoscale is lacking. By dual-color direct stochastic optical reconstruction microscopy, we for the first time determined the nanoscale organization of individual podosomes and their spatial arrangement within large clusters formed at the cell–substrate interface. Superresolution imaging of three ring components with respect to actin revealed that the cores are interconnected and linked to the ventral membrane by radiating actin filaments. In core-free areas, αMβ2 integrin and talin islets are homogeneously distributed, whereas vinculin preferentially localizes proximal to the core and along the radiating actin filaments. Podosome clusters appear as self-organized contact areas, where mechanical cues might be efficiently transduced and redistributed. Our findings call for a reevaluation of the current “core–ring” model and provide a novel structural framework for further understanding the collective behavior of podosome clusters. |
format | Online Article Text |
id | pubmed-3694795 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36947952013-09-16 Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes van den Dries, K. Schwartz, S. L. Byars, J. Meddens, M.B.M. Bolomini-Vittori, M. Lidke, D. S. Figdor, C. G. Lidke, K. A. Cambi, A. Mol Biol Cell Articles Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations correlate with intensity fluctuations of vinculin but not talin, suggesting different molecular rearrangements for these components. Detailed information on the mutual localization of core and ring components at the nanoscale is lacking. By dual-color direct stochastic optical reconstruction microscopy, we for the first time determined the nanoscale organization of individual podosomes and their spatial arrangement within large clusters formed at the cell–substrate interface. Superresolution imaging of three ring components with respect to actin revealed that the cores are interconnected and linked to the ventral membrane by radiating actin filaments. In core-free areas, αMβ2 integrin and talin islets are homogeneously distributed, whereas vinculin preferentially localizes proximal to the core and along the radiating actin filaments. Podosome clusters appear as self-organized contact areas, where mechanical cues might be efficiently transduced and redistributed. Our findings call for a reevaluation of the current “core–ring” model and provide a novel structural framework for further understanding the collective behavior of podosome clusters. The American Society for Cell Biology 2013-07-01 /pmc/articles/PMC3694795/ /pubmed/23637461 http://dx.doi.org/10.1091/mbc.E12-12-0856 Text en © 2013 van den Dries et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles van den Dries, K. Schwartz, S. L. Byars, J. Meddens, M.B.M. Bolomini-Vittori, M. Lidke, D. S. Figdor, C. G. Lidke, K. A. Cambi, A. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title | Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title_full | Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title_fullStr | Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title_full_unstemmed | Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title_short | Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
title_sort | dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694795/ https://www.ncbi.nlm.nih.gov/pubmed/23637461 http://dx.doi.org/10.1091/mbc.E12-12-0856 |
work_keys_str_mv | AT vandendriesk dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT schwartzsl dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT byarsj dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT meddensmbm dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT bolominivittorim dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT lidkeds dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT figdorcg dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT lidkeka dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes AT cambia dualcolorsuperresolutionmicroscopyrevealsnanoscaleorganizationofmechanosensorypodosomes |