Cargando…
PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data
Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely appl...
Autores principales: | Hoffman, Gabriel E., Logsdon, Benjamin A., Mezey, Jason G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694815/ https://www.ncbi.nlm.nih.gov/pubmed/23825936 http://dx.doi.org/10.1371/journal.pcbi.1003101 |
Ejemplares similares
-
A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
por: Logsdon, Benjamin A, et al.
Publicado: (2010) -
PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics
por: Zhao, Zijie, et al.
Publicado: (2021) -
Mouse obesity network reconstruction with a variational Bayes algorithm to employ aggressive false positive control
por: Logsdon, Benjamin A, et al.
Publicado: (2012) -
Bayesian multiple logistic regression for case-control GWAS
por: Banerjee, Saikat, et al.
Publicado: (2018) -
Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations
por: Logsdon, Benjamin A., et al.
Publicado: (2010)