Cargando…

An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera

Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sawasvirojwong, Sutthipong, Srimanote, Potjanee, Chatsudthipong, Varanuj, Muanprasat, Chatchai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694821/
https://www.ncbi.nlm.nih.gov/pubmed/23826402
http://dx.doi.org/10.1371/journal.pntd.0002293
_version_ 1782274893678641152
author Sawasvirojwong, Sutthipong
Srimanote, Potjanee
Chatsudthipong, Varanuj
Muanprasat, Chatchai
author_facet Sawasvirojwong, Sutthipong
Srimanote, Potjanee
Chatsudthipong, Varanuj
Muanprasat, Chatchai
author_sort Sawasvirojwong, Sutthipong
collection PubMed
description Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (10(7) CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼10(9) CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTR(inh)-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V. cholerae-induced intestinal fluid secretion.
format Online
Article
Text
id pubmed-3694821
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36948212013-07-03 An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera Sawasvirojwong, Sutthipong Srimanote, Potjanee Chatsudthipong, Varanuj Muanprasat, Chatchai PLoS Negl Trop Dis Research Article Cholera is a diarrheal disease causing significant morbidity and mortality worldwide. This study aimed to establish an adult mouse model of Vibrio cholerae-induced diarrhea and to characterize its pathophysiology. Ligated ileal loops of adult mice were inoculated for 6, 9, 12 and 18 h with a classical O1 hypertoxigenic 569B strain of V. cholerae (10(7) CFU/loop). Time-course studies demonstrated that the optimal period for inducing diarrhea was 12 h post-inoculation, when peak intestinal fluid accumulation (loop/weight ratio of ∼0.2 g/cm) occurred with the highest diarrhea success rate (90%). In addition, pathogenic numbers of V. cholerae (∼10(9) CFU/g tissue) were recovered from ileal loops at all time points between 6–18 h post-inoculation with the diarrheagenic amount of cholera toxin being detected in the secreted intestinal fluid at 12 h post-inoculation. Interestingly, repeated intraperitoneal administration of CFTR(inh)-172 (20 µg every 6 h), an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR), completely abolished the V. cholerae-induced intestinal fluid secretion without affecting V. cholerae growth in vivo. As analyzed by ex vivo measurement of intestinal electrical resistance and in vivo assay of fluorescein thiocyanate (FITC)-dextran trans-intestinal flux, V. cholerae infection had no effect on intestinal paracellular permeability. Measurements of albumin in the diarrheal fluid suggested that vascular leakage did not contribute to the pathogenesis of diarrhea in this model. Furthermore, histological examination of V. cholerae-infected intestinal tissues illustrated edematous submucosa, congestion of small vessels and enhanced mucus secretion from goblet cells. This study established a new adult mouse model of V. cholerae-induced diarrhea, which could be useful for studying the pathogenesis of cholera diarrhea and for evaluating future therapeutics/cholera vaccines. In addition, our study confirmed the major role of CFTR in V. cholerae-induced intestinal fluid secretion. Public Library of Science 2013-06-27 /pmc/articles/PMC3694821/ /pubmed/23826402 http://dx.doi.org/10.1371/journal.pntd.0002293 Text en © 2013 Sawasvirojwong et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Sawasvirojwong, Sutthipong
Srimanote, Potjanee
Chatsudthipong, Varanuj
Muanprasat, Chatchai
An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title_full An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title_fullStr An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title_full_unstemmed An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title_short An Adult Mouse Model of Vibrio cholerae-induced Diarrhea for Studying Pathogenesis and Potential Therapy of Cholera
title_sort adult mouse model of vibrio cholerae-induced diarrhea for studying pathogenesis and potential therapy of cholera
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694821/
https://www.ncbi.nlm.nih.gov/pubmed/23826402
http://dx.doi.org/10.1371/journal.pntd.0002293
work_keys_str_mv AT sawasvirojwongsutthipong anadultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT srimanotepotjanee anadultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT chatsudthipongvaranuj anadultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT muanprasatchatchai anadultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT sawasvirojwongsutthipong adultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT srimanotepotjanee adultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT chatsudthipongvaranuj adultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera
AT muanprasatchatchai adultmousemodelofvibriocholeraeinduceddiarrheaforstudyingpathogenesisandpotentialtherapyofcholera