Cargando…

Metastasis of Breast Tumor Cells to Brain Is Suppressed by Phenethyl Isothiocyanate in a Novel In Vivo Metastasis Model

Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. In the current study, we evaluat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Parul, Adkins, Chris, Lockman, Paul, Srivastava, Sanjay K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695065/
https://www.ncbi.nlm.nih.gov/pubmed/23826254
http://dx.doi.org/10.1371/journal.pone.0067278
Descripción
Sumario:Breast tumor metastasis is a leading cause of cancer-related deaths worldwide. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. The chances of brain metastasis are further elevated in patients with HER2 overexpression. In the current study, we evaluated the anti-metastatic effects of phenethyl isothiocyanate (PEITC) in a novel murine model of breast tumor metastasis. The MDA-MB-231-BR (BR-brain seeking) breast tumor cells stably transfected with luciferase were injected into the left ventricle of mouse heart and the migration of cells to brain was monitored using a non-invasive IVIS bio-luminescent imaging system. In order to study the efficacy of PEITC in preventing the number of tumor cells migrating to brain, mice were given 10 µmol PEITC by oral gavage for ten days prior to intra-cardiac injection of tumor cells labeled with quantum dots. To evaluate the tumor growth suppressive effects, 10 µmol PEITC was given to mice every day starting 14(th) day after intra-cardiac cell injection. Based on the presence of quantum dots in the brain section of control and treated mice, our results reveal that PEITC significantly prevented the metastasis of breast cancer cells to brain. Our results demonstrate that the growth of metastatic brain tumors in PEITC treated mice was about 50% less than that of control. According to Kaplan Meir’s curve, median survival of tumor bearing mice treated with PEITC was prolonged by 20.5%. Furthermore as compared to controls, we observed reduced HER2, EGFR and VEGF expression in the brain sections of PEITC treated mice. To the best of our knowledge, our study for the first time demonstrates the anti-metastatic effects of PEITC in vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation.