Cargando…
Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis
Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, an...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695354/ https://www.ncbi.nlm.nih.gov/pubmed/23819037 |
_version_ | 1782274966181380096 |
---|---|
author | Skvortsov, T.A. Ignatov, D.V. Majorov, K.B. Apt, A.S. Azhikina, T.L. |
author_facet | Skvortsov, T.A. Ignatov, D.V. Majorov, K.B. Apt, A.S. Azhikina, T.L. |
author_sort | Skvortsov, T.A. |
collection | PubMed |
description | Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development. |
format | Online Article Text |
id | pubmed-3695354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | A.I. Gordeyev |
record_format | MEDLINE/PubMed |
spelling | pubmed-36953542013-07-01 Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis Skvortsov, T.A. Ignatov, D.V. Majorov, K.B. Apt, A.S. Azhikina, T.L. Acta Naturae Research Article Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development. A.I. Gordeyev 2013 /pmc/articles/PMC3695354/ /pubmed/23819037 Text en Copyright © 2013 Park-media Ltd. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Skvortsov, T.A. Ignatov, D.V. Majorov, K.B. Apt, A.S. Azhikina, T.L. Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis |
title | Mycobacterium tuberculosis
Transcriptome Profiling in Mice
with Genetically Different Susceptibility
to Tuberculosis |
title_full | Mycobacterium tuberculosis
Transcriptome Profiling in Mice
with Genetically Different Susceptibility
to Tuberculosis |
title_fullStr | Mycobacterium tuberculosis
Transcriptome Profiling in Mice
with Genetically Different Susceptibility
to Tuberculosis |
title_full_unstemmed | Mycobacterium tuberculosis
Transcriptome Profiling in Mice
with Genetically Different Susceptibility
to Tuberculosis |
title_short | Mycobacterium tuberculosis
Transcriptome Profiling in Mice
with Genetically Different Susceptibility
to Tuberculosis |
title_sort | mycobacterium tuberculosis
transcriptome profiling in mice
with genetically different susceptibility
to tuberculosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695354/ https://www.ncbi.nlm.nih.gov/pubmed/23819037 |
work_keys_str_mv | AT skvortsovta mycobacteriumtuberculosistranscriptomeprofilinginmicewithgeneticallydifferentsusceptibilitytotuberculosis AT ignatovdv mycobacteriumtuberculosistranscriptomeprofilinginmicewithgeneticallydifferentsusceptibilitytotuberculosis AT majorovkb mycobacteriumtuberculosistranscriptomeprofilinginmicewithgeneticallydifferentsusceptibilitytotuberculosis AT aptas mycobacteriumtuberculosistranscriptomeprofilinginmicewithgeneticallydifferentsusceptibilitytotuberculosis AT azhikinatl mycobacteriumtuberculosistranscriptomeprofilinginmicewithgeneticallydifferentsusceptibilitytotuberculosis |