Cargando…
Transcranial alternating current stimulation (tACS)
Transcranial alternating current stimulation (tACS) seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency) or desynchronize (e.g., by the app...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695369/ https://www.ncbi.nlm.nih.gov/pubmed/23825454 http://dx.doi.org/10.3389/fnhum.2013.00317 |
_version_ | 1782274967090495488 |
---|---|
author | Antal, Andrea Paulus, Walter |
author_facet | Antal, Andrea Paulus, Walter |
author_sort | Antal, Andrea |
collection | PubMed |
description | Transcranial alternating current stimulation (tACS) seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency) or desynchronize (e.g., by the application of several frequencies) cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the “ripple” range induces intensity dependent inhibition or excitation in the motor cortex (M1) most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology. |
format | Online Article Text |
id | pubmed-3695369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-36953692013-07-02 Transcranial alternating current stimulation (tACS) Antal, Andrea Paulus, Walter Front Hum Neurosci Neuroscience Transcranial alternating current stimulation (tACS) seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency) or desynchronize (e.g., by the application of several frequencies) cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the “ripple” range induces intensity dependent inhibition or excitation in the motor cortex (M1) most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology. Frontiers Media S.A. 2013-06-28 /pmc/articles/PMC3695369/ /pubmed/23825454 http://dx.doi.org/10.3389/fnhum.2013.00317 Text en Copyright © 2013 Antal and Paulus. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Antal, Andrea Paulus, Walter Transcranial alternating current stimulation (tACS) |
title | Transcranial alternating current stimulation (tACS) |
title_full | Transcranial alternating current stimulation (tACS) |
title_fullStr | Transcranial alternating current stimulation (tACS) |
title_full_unstemmed | Transcranial alternating current stimulation (tACS) |
title_short | Transcranial alternating current stimulation (tACS) |
title_sort | transcranial alternating current stimulation (tacs) |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695369/ https://www.ncbi.nlm.nih.gov/pubmed/23825454 http://dx.doi.org/10.3389/fnhum.2013.00317 |
work_keys_str_mv | AT antalandrea transcranialalternatingcurrentstimulationtacs AT pauluswalter transcranialalternatingcurrentstimulationtacs |