Cargando…
New synthetic substrates of mammalian nucleotide excision repair system
DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoy...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695498/ https://www.ncbi.nlm.nih.gov/pubmed/23609543 http://dx.doi.org/10.1093/nar/gkt301 |
_version_ | 1782274980055089152 |
---|---|
author | Evdokimov, Alexey Petruseva, Irina Tsidulko, Aleksandra Koroleva, Ludmila Serpokrylova, Inna Silnikov, Vladimir Lavrik, Olga |
author_facet | Evdokimov, Alexey Petruseva, Irina Tsidulko, Aleksandra Koroleva, Ludmila Serpokrylova, Inna Silnikov, Vladimir Lavrik, Olga |
author_sort | Evdokimov, Alexey |
collection | PubMed |
description | DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications. |
format | Online Article Text |
id | pubmed-3695498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36954982013-06-28 New synthetic substrates of mammalian nucleotide excision repair system Evdokimov, Alexey Petruseva, Irina Tsidulko, Aleksandra Koroleva, Ludmila Serpokrylova, Inna Silnikov, Vladimir Lavrik, Olga Nucleic Acids Res Methods Online DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA show good substrate properties in NER process. Modified extended linear nFlu– and nAntr–DNA are suitable for estimation of specific excision activity catalysed with mammalian whole-cell extracts. The following substrate activity range was revealed for the model 137-bp linear double-stranded DNA: nAnt–DNA ≈ nFlu–DNA > Chol–DNA (Chol–DNA—legitimate NER substrate that contains non-nucleoside fragment bearing cholesterol residue). In vitro assay shows that modified DNA can be a useful tool to study NER activity in whole-cell extracts. The developed approach should be of general use for the incorporation of NER-sensitive distortions into model DNAs. The new synthetic extended linear DNA containing bulky non-nucleoside modifications will be useful for NER mechanism study and for applications. Oxford University Press 2013-07 2013-04-22 /pmc/articles/PMC3695498/ /pubmed/23609543 http://dx.doi.org/10.1093/nar/gkt301 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Methods Online Evdokimov, Alexey Petruseva, Irina Tsidulko, Aleksandra Koroleva, Ludmila Serpokrylova, Inna Silnikov, Vladimir Lavrik, Olga New synthetic substrates of mammalian nucleotide excision repair system |
title | New synthetic substrates of mammalian nucleotide excision repair system |
title_full | New synthetic substrates of mammalian nucleotide excision repair system |
title_fullStr | New synthetic substrates of mammalian nucleotide excision repair system |
title_full_unstemmed | New synthetic substrates of mammalian nucleotide excision repair system |
title_short | New synthetic substrates of mammalian nucleotide excision repair system |
title_sort | new synthetic substrates of mammalian nucleotide excision repair system |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695498/ https://www.ncbi.nlm.nih.gov/pubmed/23609543 http://dx.doi.org/10.1093/nar/gkt301 |
work_keys_str_mv | AT evdokimovalexey newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT petrusevairina newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT tsidulkoaleksandra newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT korolevaludmila newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT serpokrylovainna newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT silnikovvladimir newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem AT lavrikolga newsyntheticsubstratesofmammaliannucleotideexcisionrepairsystem |