Cargando…

Single-cell paired-end genome sequencing reveals structural variation per cell cycle

The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elu...

Descripción completa

Detalles Bibliográficos
Autores principales: Voet, Thierry, Kumar, Parveen, Van Loo, Peter, Cooke, Susanna L., Marshall, John, Lin, Meng-Lay, Zamani Esteki, Masoud, Van der Aa, Niels, Mateiu, Ligia, McBride, David J., Bignell, Graham R., McLaren, Stuart, Teague, Jon, Butler, Adam, Raine, Keiran, Stebbings, Lucy A., Quail, Michael A., D’Hooghe, Thomas, Moreau, Yves, Futreal, P. Andrew, Stratton, Michael R., Vermeesch, Joris R., Campbell, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695511/
https://www.ncbi.nlm.nih.gov/pubmed/23630320
http://dx.doi.org/10.1093/nar/gkt345
_version_ 1782274983044579328
author Voet, Thierry
Kumar, Parveen
Van Loo, Peter
Cooke, Susanna L.
Marshall, John
Lin, Meng-Lay
Zamani Esteki, Masoud
Van der Aa, Niels
Mateiu, Ligia
McBride, David J.
Bignell, Graham R.
McLaren, Stuart
Teague, Jon
Butler, Adam
Raine, Keiran
Stebbings, Lucy A.
Quail, Michael A.
D’Hooghe, Thomas
Moreau, Yves
Futreal, P. Andrew
Stratton, Michael R.
Vermeesch, Joris R.
Campbell, Peter J.
author_facet Voet, Thierry
Kumar, Parveen
Van Loo, Peter
Cooke, Susanna L.
Marshall, John
Lin, Meng-Lay
Zamani Esteki, Masoud
Van der Aa, Niels
Mateiu, Ligia
McBride, David J.
Bignell, Graham R.
McLaren, Stuart
Teague, Jon
Butler, Adam
Raine, Keiran
Stebbings, Lucy A.
Quail, Michael A.
D’Hooghe, Thomas
Moreau, Yves
Futreal, P. Andrew
Stratton, Michael R.
Vermeesch, Joris R.
Campbell, Peter J.
author_sort Voet, Thierry
collection PubMed
description The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.
format Online
Article
Text
id pubmed-3695511
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-36955112013-06-28 Single-cell paired-end genome sequencing reveals structural variation per cell cycle Voet, Thierry Kumar, Parveen Van Loo, Peter Cooke, Susanna L. Marshall, John Lin, Meng-Lay Zamani Esteki, Masoud Van der Aa, Niels Mateiu, Ligia McBride, David J. Bignell, Graham R. McLaren, Stuart Teague, Jon Butler, Adam Raine, Keiran Stebbings, Lucy A. Quail, Michael A. D’Hooghe, Thomas Moreau, Yves Futreal, P. Andrew Stratton, Michael R. Vermeesch, Joris R. Campbell, Peter J. Nucleic Acids Res Genomics The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. Oxford University Press 2013-07 2013-04-27 /pmc/articles/PMC3695511/ /pubmed/23630320 http://dx.doi.org/10.1093/nar/gkt345 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genomics
Voet, Thierry
Kumar, Parveen
Van Loo, Peter
Cooke, Susanna L.
Marshall, John
Lin, Meng-Lay
Zamani Esteki, Masoud
Van der Aa, Niels
Mateiu, Ligia
McBride, David J.
Bignell, Graham R.
McLaren, Stuart
Teague, Jon
Butler, Adam
Raine, Keiran
Stebbings, Lucy A.
Quail, Michael A.
D’Hooghe, Thomas
Moreau, Yves
Futreal, P. Andrew
Stratton, Michael R.
Vermeesch, Joris R.
Campbell, Peter J.
Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title_full Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title_fullStr Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title_full_unstemmed Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title_short Single-cell paired-end genome sequencing reveals structural variation per cell cycle
title_sort single-cell paired-end genome sequencing reveals structural variation per cell cycle
topic Genomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695511/
https://www.ncbi.nlm.nih.gov/pubmed/23630320
http://dx.doi.org/10.1093/nar/gkt345
work_keys_str_mv AT voetthierry singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT kumarparveen singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT vanloopeter singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT cookesusannal singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT marshalljohn singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT linmenglay singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT zamaniestekimasoud singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT vanderaaniels singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT mateiuligia singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT mcbridedavidj singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT bignellgrahamr singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT mclarenstuart singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT teaguejon singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT butleradam singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT rainekeiran singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT stebbingslucya singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT quailmichaela singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT dhooghethomas singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT moreauyves singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT futrealpandrew singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT strattonmichaelr singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT vermeeschjorisr singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle
AT campbellpeterj singlecellpairedendgenomesequencingrevealsstructuralvariationpercellcycle