Cargando…

Impact of αAI-1 Expressed in Genetically Modified Cowpea on Zabrotes subfasciatus (Coleoptera: Chrysomelidae) and Its Parasitoid, Dinarmus basalis (Hymenoptera: Pteromalidae)

Genetically modified (GM) cowpea seeds expressing αAI-1, an α-amylase inhibitor from the common bean, have been shown to be immune against several bruchid species. Effective control of such pests by growing GM cowpea could promote the spread of bruchid species that are αAI-1 tolerant. Consequently,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lüthi, Christoph, Álvarez-Alfageme, Fernando, Romeis, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695894/
https://www.ncbi.nlm.nih.gov/pubmed/23840776
http://dx.doi.org/10.1371/journal.pone.0067785
Descripción
Sumario:Genetically modified (GM) cowpea seeds expressing αAI-1, an α-amylase inhibitor from the common bean, have been shown to be immune against several bruchid species. Effective control of such pests by growing GM cowpea could promote the spread of bruchid species that are αAI-1 tolerant. Consequently, the sustainability of bruchid pest control could be increased by combining GM seeds and hymenopteran parasitoids. However, there are concerns that αAI-1 could interfere with the biological control provided by parasitoids. Here, we assessed the impact of GM cowpea seeds expressing αAI-1 on the αAI-1-tolerant bruchid Zabrotes subfasciatus and its parasitoid Dinarmus basalis. αAI-1 in cowpea seeds did not increase resistance to Z. subfasciatus or affect the mortality rate of Z. subfasciatus larvae. Parasitism of Z. subfasciatus by D. basalis and fitness of D. basalis offspring were not affected by the presence of αAI-1. Thus, αAI-1-expressing cowpeas and parasitoids should be compatible for the control of bruchid pests.