Cargando…

Overexpression of TaLEA Gene from Tamarix androssowii Improves Salt and Drought Tolerance in Transgenic Poplar (Populus simonii × P. nigra)

Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarix androssowii (named TaLEA) was transformed into Xiaohei poplar ( Populus simonii × P. nigra) via Agrobacterium . Twenty-five independent transgenic lines were obtained...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Weidong, Bai, Shuang, Li, Qingmei, Gao, Caiqiu, Liu, Guifeng, Li, Guangde, Tan, Feili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696074/
https://www.ncbi.nlm.nih.gov/pubmed/23840708
http://dx.doi.org/10.1371/journal.pone.0067462
Descripción
Sumario:Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarix androssowii (named TaLEA) was transformed into Xiaohei poplar ( Populus simonii × P. nigra) via Agrobacterium . Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.