Cargando…

Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity

BACKGROUND AND OBJECTIVES: Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shahbazi, Razieh, Kasra-Kermanshahi, Roha, Gharavi, Sara, Moosavi-Nejad, Zahra, Borzooee, Faezeh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696852/
https://www.ncbi.nlm.nih.gov/pubmed/23825734
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS–degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. MATERIALS AND METHODS: Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). RESULTS AND CONCLUSION: Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.